1) The unit for friction loss is
a) J / kg
b) $\mathrm{m}^{2} / \mathrm{s}^{2}$
c) $\mathrm{Pa} . \mathrm{m}^{3} / \mathrm{kg}$
d) All the above

Answer: d

$$
\mathrm{F}_{\mathrm{f}}=\frac{\Delta \mathrm{p}_{\mathrm{f}}}{\rho}=\frac{\mathrm{pa}}{\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=\frac{\frac{\mathrm{kg} \mathrm{~m}}{\mathrm{~s}^{2}}}{\mathrm{~m}^{2}} \times \frac{\mathrm{m}^{3}}{\mathrm{~kg}}=\frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}=\mathrm{J} / \mathrm{kg}
$$

2) For turbulent flow in a pipe it has been established that $v=v_{\text {max }}[1-r / R]^{1 / 7}$, then find out the relation between v_{av} and $\mathrm{v}_{\text {max }}$.
a) $\mathrm{v}_{\mathrm{av}}=0.515^{*} \mathrm{v}_{\text {max }}$
b) $\mathrm{v}_{\mathrm{av}}=0.817 * \mathrm{v}_{\text {max }}$
c) $\mathrm{v}_{\mathrm{av}}=0.525^{*} \mathrm{v}_{\text {max }}$
d) $\mathrm{v}_{\mathrm{av}}=0.887{ }^{*} \mathrm{v}_{\text {max }}$

Answer: b
3) For the vertical falling film with no inclination, $v_{\max }$ will be
a) $\frac{\rho g \delta^{2}}{2 \mu}$
b) $\frac{\rho g \delta^{2}}{3 \mu}$
c) $\frac{\rho g \delta^{2}}{4 \mu}$
d) $\frac{\rho g \delta^{2}}{8 \mu}$

Answer: a
$\frac{\rho g_{x} \delta^{2} \cos \beta}{2 \mu}\left[1-\left(\frac{x}{\delta}\right)^{2}\right]$
$v_{\text {max }}$ is at $\mathrm{x}=0$
and since it is vertical falling film $\beta=0$
$\therefore \cos \beta=1$
$\frac{\rho \mathrm{g} \delta^{2}}{2 \mu}$
4) Which of the following is correct?
a) $\mathrm{v}_{\mathrm{av}}=\frac{2}{3} * \mathrm{v}_{\text {max }}$
b) $\mathrm{v}_{\mathrm{av}}=\frac{3}{2} * v_{\text {max }}$
c) $\mathrm{v}_{\mathrm{av}}=\frac{2}{5} * \mathrm{v}_{\text {max }}$
d) $\mathrm{V}_{\mathrm{av}}=\frac{5}{2} * v_{\text {max }}$

Answer: a

$$
\begin{aligned}
& \mathrm{v}_{\max }=\frac{\rho \mathrm{g}_{\mathrm{x}} \delta^{2} \cos \beta}{2 \mu} \text { and } \mathrm{v}_{\mathrm{av}}=\frac{\rho \mathrm{g}_{\mathrm{x}} \delta^{2} \cos \beta}{3 \mu} \\
& \therefore \mathrm{v}_{\mathrm{av}}=\frac{2}{3} * \mathrm{v}_{\max }
\end{aligned}
$$

5) For the vertical falling film with no inclination, v_{av} will be
a) $\frac{\rho g \delta^{2}}{2 \mu}$
b) $\frac{\rho g \delta^{2}}{3 \mu}$
c) $\frac{\rho g \delta^{2}}{4 \mu}$
d) $\frac{\rho \mathrm{g} \delta^{2}}{5 \mu}$

Answer: b
$\frac{\rho g \delta^{2} \cos \beta}{3 \mu}$
since it is vertical falling film $\beta=0$
$\therefore \cos \beta=1$
and
$\frac{\rho g \delta^{2}}{3 \mu}$
6) Mass flow rate per unit width is given as
a) $\rho \delta v_{z}$
b) $\rho \delta / v_{z}$
c) $\rho / \delta v_{z}$
d) None of the above

Answer: a
7) For the laminar flow without rippling
a) $\mathrm{Re}<4$ to 25
b) 4 to $25<\mathrm{Re}<1000$ to 2000
c) $\mathrm{Re}>1000$ to 2000
d) None of the above

Answer: a

8) The force exerted by the fluid on the solid is equal to
a) sum of the forces acting on the inner cylinder
b) sum of the forces acting on the outer cylinder
c) sum of the forces acting on the inner and outer cylinder
d) None of the above

Answer: c

9) If mass flow rate per unit width of wall $0.06 \mathrm{~kg} / \mathrm{m} . \mathrm{s}$ and viscosity is $0.25 \mathrm{~Pa} . \mathrm{s}$, then calculate the Reynolds no.?
a) 0.56
b) 0.66
c) 0.86
d) 0.96

Answer: d

$$
\operatorname{Re}=\frac{4 \dot{\mathrm{~m}}}{\mu}=\frac{4 \times 0.06}{0.25}=0.96
$$

10) For the turbulent film flow
a) $\mathrm{Re}>1000$ to 2000
b) $\mathrm{Re}>2000$ to 3000
c) 4 to $25<\mathrm{Re}<1000$ to 2000
d) None of the above

Answer: a

