- 1) The unit for friction loss is
 - a) J/kg
 - b) m^2/s^2
 - c) Pa.m³/kg
 - d) All the above

Answer: d

$$F_{f} = \frac{\Delta p_{f}}{\rho} = \frac{pa}{\frac{kg}{m^{3}}} = \frac{\frac{kg}{s^{2}}}{m^{2}} \times \frac{m^{3}}{kg} = \frac{m^{2}}{s^{2}} = J/kg$$

- 2) For turbulent flow in a pipe it has been established that $v = v_{max} [1-r/R]^{1/7}$, then find out the relation between v_{av} and v_{max} .
 - a) $v_{av}=0.515*v_{max}$
 - b) v_{av}=0.817*v_{max}
 - c) $v_{av}=0.525*v_{max}$
 - d) $v_{av}=0.887*v_{max}$

Answer: b

3) For the vertical falling film with no inclination, v_{max} will be

a)
$$\frac{\rho g \delta^2}{2\mu}$$

b)
$$\frac{\rho g \delta^2}{3\mu}$$

c)
$$\frac{\rho g \delta^2}{4\mu}$$

d)
$$\frac{\rho g \delta^2}{8\mu}$$

Answer: a

$$\frac{\rho g_x \delta^2 \cos \beta}{2\mu} \left[1 - \left(\frac{x}{\delta}\right)^2 \right]$$
v_{max} is at x = 0
and since it is vertical falling film β =0
 $\therefore \cos \beta = 1$
 $\frac{\rho g \delta^2}{2\mu}$

4) Which of the following is correct?

a)
$$v_{av} = \frac{2}{3} * v_{max}$$

b) $v_{av} = \frac{3}{2} * v_{max}$
c) $v_{av} = \frac{2}{5} * v_{max}$
d) $v_{av} = \frac{5}{2} * v_{max}$

Answer: a

$$v_{max} = \frac{\rho g_x \delta^2 \cos \beta}{2\mu} \text{ and } v_{av} = \frac{\rho g_x \delta^2 \cos \beta}{3\mu}$$
$$\therefore v_{av} = \frac{2}{3} v_{max}$$

5) For the vertical falling film with no inclination, v_{av} will be $og\delta^2$

a)
$$\frac{\rho g \delta^2}{2\mu}$$

b)
$$\frac{\rho g \delta^2}{3\mu}$$

c)
$$\frac{\rho g \delta^2}{4\mu}$$

d)
$$\frac{\rho g \delta^2}{5\mu}$$

Answer: b

$$\frac{\rho g \delta^2 \cos \beta}{3\mu}$$

since it is vertical falling film $\beta = 0$
 $\therefore \cos \beta = 1$
and
 $\frac{\rho g \delta^2}{3\mu}$

- 6) Mass flow rate per unit width is given as
 - a) $\rho \delta v_z$
 - b) $\rho\delta/v_z$
 - c) $\rho/\delta v_z$
 - d) None of the above

Answer: a

- 7) For the laminar flow without rippling
 - a) Re< 4 to 25
 - b) 4 to 25 < Re < 1000 to 2000
 - c) Re > 1000 to 2000
 - d) None of the above

Answer: a

- 8) The force exerted by the fluid on the solid is equal to
 - a) sum of the forces acting on the inner cylinder
 - b) sum of the forces acting on the outer cylinder
 - c) sum of the forces acting on the inner and outer cylinder
 - d) None of the above

Answer: c

- 9) If mass flow rate per unit width of wall 0.06 kg/m.s and viscosity is 0.25 Pa.s, then calculate the Reynolds no.?
 - a) 0.56
 - b) 0.66
 - c) 0.86
 - d) 0.96

Answer: d

$$\operatorname{Re} = \frac{4\dot{\mathrm{m}}}{\mu} = \frac{4 \times 0.06}{0.25} = 0.96$$

- 10) For the turbulent film flow
 - a) Re > 1000 to 2000
 - b) Re > 2000 to 3000
 - c) 4 to 25 < Re < 1000 to 2000
 - d) None of the above

Answer: a